

Uwe Schneekloth DESY

ENC/EIC Collider Workshop EINN09, Milos Sept. 2009

Outline

- Motivation
- Overview
- Ring-Ring Option
- LINAC-Ring Option
- Conclusions
- Goal: conceptual design report end of 2010

Mainly reporting on status at the 2nd CERN-ECFA-NuPECC LHeC Workhop 1-3 Sept. 2009, Divonne Using many slides from B. Holzer and F. Zimmermann

Motivation for LHeC

M.Klein

Electron proton (nucleon) collisions in the LHC

- Unfolding completely the partonic structure of the proton (neutron and photon) and search for sub-substructure down to scales ten times below HERA limits
- Sensitive exploration of new symmetries and the grand unification of particle interactions with electroweak and strong interaction measurements of unprecedented precision
- Search for and exploration of new Tera scale physics, in particular for singly produced new states (LQ, RPV SUSY, excited fermions), complementary to the LHC pp program
- Exploration of high density matter (low x physics beyond the expected unitarity limit for the growth of the gluon density)
- Unfolding the substructure and parton dynamics inside nuclei and study of quark-gluon plasma matter, by an extension of the kinematic range of lepton-nucleus scattering by 4 orders of magnitude

Particle Physics Goals

- Lepton energies 50 to 150 GeV
- Maximum luminosity $\geq 10^{33}$ cm⁻² s⁻¹
- Electron and positron beams
- Lepton polarization
- Rich physics program
 - High and low Q² physics

Talk by O. Behnke

LHeC Overview

LHeC Overview

General Statement

• Whatever we do ... the layout of the LHC delivers an enormous potential for e/p luminosity (B. Holzer) proton beam 2808 bunches, 7 TeV $\rightarrow \epsilon_n = 3.75 \ \mu m$

Example: LHeC Ring-Ring: basic parameters

Standard	Protons	Electrons	Jumper connection
Parameters	Np=1.15*10 ¹¹	Ne=1.4*10 ¹⁰	The stansport
	nb=2808	nb=2808	
	Ip=582mA	Ie=71mA	Warm helium recovery line
Optics	$\beta_{xp}=180cm$	β_{xe} =12.7cm	
	β_{vp} =50cm	$\beta_{ve} = 7.1 cm$	Cryogenic distribution line (QRL)
	$\varepsilon_{xp}^{3}=0.5nm$ rad	$\varepsilon_{xe} = 7.6 nm rad$	
	ε_{yp} =0.5nm rad	ε _{ye} =3.8nm rad	
Beam size	$\sigma_{xp}=30 \ \mu m$	$\sigma_{xe} = 30 \mu m$	LHC machine cryostat
	$\sigma_{vp} = 15.8 \ \mu m$	σ _{ve} =15.8μm	
Luminosity	8.2*10 ³²	$cm^{-2} s^{-1}$	

e storage ring on top of LHC

Proton Optics

Electron Ring Optics

- Design constraints
- Matched beam sizes at the IP required for stable operation.
- Tolerable beam-beam tune shift parameters ... for both beams
- Choose parameters close to LEP design and optimise the lattice for one ep interaction region

U. Schneekloth

Electron Ring: IR 8 Optics

A. Kling

Electron Ring IR

- Layout IR 8
- Triplet focusing
- Triplet displaced to allow for a quick beam separation
 --> additional dispersion created close to IP
- Beam separation facilitated by crossing angle (1.5 mrad)
 15 m long soft separation dipole completes separation
 before the focusing elements of the proton beams.
- Interleaved magnet structure of the two rings: First matching quadrupole after the triplet: at 66.43 m to adjust optical functions --> try to avoid "large" β-functions
- Asymmetric layout (asymmetrically powered dispersion suppressors)
- Optical functions matched to the values at IP:

 $\beta x = 12.7$ cm, $\beta y = 7.1$ cm

Layout IR 1 & 5

• Electron bypass at ATLAS and CMS

Electron Beam Bypass in IR 1 & 5

U. Schneekloth

Ring-Ring IR Design

U. Schneekloth

IR Design Challenges

F. Willeke Advantage of LHC: Large number of bunches \rightarrow high luminosity Disadvantage: Need fast beam separation, crossing angle to support separation

in

LHC bunch distance: 25 ns 1st parasitic crossing: 3.75m First e-quad positioned at 1.2m ... too far for sufficient beam separation Separation has "to start at the IP"

- --> support off-center quadrupole separation scheme by crossing angle at the IP
- Technical challenges:
- superconducting half quadrupoles
- e beam guided through p-quad cryostat
- crab cavities needed to avoid loss of luminosity

IR Design Synchrotron Radiation

Total synchrotron radiation power in IR 60 kW (HERA II 30 kW) Have to study absorber, collimators, size of beam pipe

Ring-Ring Luminosity Prospects

Luminosity safely 10³³cm⁻²s⁻¹

LHC upgrade: N_p increased. Need to keep e tune shift low: by increasing β_p , decreasing β_e but enlarging e emittance, to keep e and p matched.

LHeC profits from LHC upgrade but not proportional to N_p

Tuneshift limit:

$$\Delta \boldsymbol{v}_{xe} = \frac{\boldsymbol{\beta}_{xe} \boldsymbol{r}_e}{2\pi \, \boldsymbol{\gamma}_e} * \frac{N_p}{\boldsymbol{\sigma}_{xp} (\boldsymbol{\sigma}_{xp} + \boldsymbol{\sigma}_{yp})}$$

Experience:					
LEP	$\Delta v_e = 0.048$				
LHC-B	$\Delta v_p = 0.0037$				
HERA	$\Delta v_e = 0.051$ $\Delta v_p = 0.0016$				

Standard	Protonen	Elektronen	
Parameter			
	Np=1.15*10 ¹¹	Ne=1.4*10 ¹⁰	nb=2808
	Ip=582 mA	Ie=71mA	
Optics	βxp=180 cm	βxe=12.7 cm	
	βyp= 50 cm	$\beta ye=7.1$ cm	
	exp=0.5 nm rad	Exe=7.6 nm rad	
	eyp=0.5 nm rad	Eye=3.8 nm rad	
Beamsize	σx=30 μm	σx=30 μm	
	σy=15.8 μm	σy=15.8 μm	
Tuneshift	<i>∆vx=0.00055</i>	<i>∆vx=0.0484</i>	
	<i>∆vy=0.00029</i>	<i>∆vy=0.0510</i>	
Luminosity	$L=8.2*10^{32}$		
¥71.•	D (T II.	
Ultimate	Protonen	Elektronen	
Parameter	N 1 7*1011	N 1 (*1010	1 2000
	Np=1.7*10**	Ne=1.4*10 ¹⁰	nb=2808
0.4	<i>Ip=860mA</i>	Ie=/ImA	
Optics	βxp=230 cm	$\beta xe=12.7 \text{ cm}$	
	$\beta yp = 60 \ cm$	$\beta ye = 7.1 \text{ cm}$	
	exp=0.5 nm rad	Exe=9 nm rad	
	eyp=0.5 nm rad	εye=4 nm rad	
Beamsize	$\sigma x=34 \ \mu m$		
	σy=17 μm		
Tuneshift	$\Delta vx = 0.00061$	$\Delta vx=0.056$	
	<i>∆vy=0.00032</i>	<i>∆vy=0.062</i>	
Luminosity	$L=1.03*10^{33}$		
Ungrade	Protonen	Flektronen	
Parameter	Troublen	Lickhonen	
1 41 41110101	Np=5*10 ¹¹	Ne=1.4*10 ¹⁰	nb=1404
	Ip=1265mA	Ie=71mA	
Optik	Bxp=400 cm	Bxe=8 cm	
	Bvp=150 cm	$\beta ve=5 cm$	
	exp=0.5 nm rad	exe=25 nm rad	
	evp=0.5 nm rad	eve=15 nm rad	
Strahlgröße	$\sigma x=44 \ \mu m$		
0 /	$\sigma v=27 \ \mu m$		
Tuneshift	$\Delta vx = 0.0011$	$\Delta vx=0.057$	
<u>_</u>	<i>Avv=0.00069</i>	$\Delta vv = 0.058$	
Luminosität	$L=1.44*10^{33}$		
	L 1.77 IV	1	1

nominal LHC

 $L = 8.2 \ 10^{32}$

ultimate LHC

 $L = 1.0 \ 10^{33}$

LHC upgrade (super LHC)

 $L = 1.4 \ 10^{33}$

Ring-Ring Luminosity vs. Energy

Design values are for 14 MW synrad loss (beam power) and 50 GeV on 7000 GeV. May have 50 MW and energies up to about 70 GeV.

$$L = \frac{\sum_{i=1}^{n_b} (I_{ei} * I_{pi})}{e^2 f_0 2\pi \sqrt{\sigma_{xp}^2 + \sigma_{xe}^2} * \sqrt{\sigma_{yp}^2 + \sigma_{ye}^2}}$$

Luminosity performance limit: E_e , I_e due to Synchrotron Radiation

$$P_{\gamma} = \frac{e^2 c}{6\pi \varepsilon_0} * \gamma^4 * r^2 * N_e$$

10³³ can be reached in RR

klystron efficiency 50%

Overall power consumption limited to 100MW

IR Design – Detector Acceptance

- So far high luminosity IR design with magnets 1.2m from IP
- Luminosity and acceptance very much depend on physics program
- Deep inelastic cross section $\sim 1/Q^4$ (momentum transfer)
 - High Q² physics (search for new physics, electron-weak studies) require high luminosity. Can be done with reduced acceptance
 - Low Q² physics (high parton densities, diffraction,...) requires good forward and rear coverage 1 – 179°. Can be done with reduced luminosity.
 - => Look into two different interaction region setups
 - $L = 10^{33} \text{ cm}^{-2} \text{ s}^{-1}$, $10^{\circ} < \theta < 170^{\circ}$ (prefer magnets not in front of CAL) L = $10^{32} \text{ cm}^{-2} \text{ s}^{-1}$, $1^{\circ} < \theta < 170^{\circ}$ Example ZEUS with integrated
 - $L = 10^{32} \text{ cm}^{-2} \text{ s}^{-1}, \quad 1^{\circ} < \theta < 179^{\circ}$

U. Schneekloth

Ongoing Studies for Ring-Ring

- Beam-beam:
 - Large crossing angle might be acceptable without crab cavities
- Bypass design:
 - RF integration into the bypass tunnels
- Lattice design:
 - Lattice optimization for compact magnet design
 - e-ring magnet design
- Injector complex:
 - Design based on multy-pass SPL
- IR:
 - Optimize IR layout (so far only 10° detector acceptance layout)
 - Synchrotron radiation absorbers and masks
 - Luminosity measurement options
 - Work on 1° layout (full detector acceptance)

LHeC Ring-LINAC Options

Ring - LINAC Options

Two-pass recirculation LINAC

- 100-140 GeV, pulsed high gradient
- Cavity gradient 25 32 MV/m
- Total circumference 15 km, using
 1.5 km arc radius (synchr. rad.)

Four-pass energy recovery LINAC (ERL)

- 60 GeV, cw lower gradient
- Cavity gradient 13 MV/m

RLA Lattice

Basic cell and magnet parameters

- Standard FODO cell (length 24 m)
- Quadrupole length 470 mm
- Maximum quadrupole gradient 78 T/m (at end of 140 GeV linac)
- Separation between quadrupoles 11.53 m to accommodate rf cavities or dipoles, orbit correctors, BPMs, etc.

- Dipole length 9.8 m
- RF-cavity length 8.4 m
- Dipole bending radius of d in arcs 1.5 km
- 90° phase advance in the arcs and return drift

A. Eide, F. Zimmermann

Energy Recovery LINAC

- Energy recovery LINAC essential for achieving high beam current/luminosity for given wall pull power
- JLAB: recirculating linac
 - 99.5% of energy recovered at 150 MeV and 10 mA
 - ~98% recovery at 1 GeV and 100 µA with beam swung between 20 MeV and 1 GeV
 - plans for multi-GeV linacs with currents of ~100 mA
- Very nice, but not yet demonstrated at high energy and with large current
 - Assumed LHeC currents are relatively low compared to other ERL projects

Positron Source for Ring-LINAC

- Challenge: 10 times more positrons than ILC design
- Large number of bunches, damping ring difficult
- Several options being considered (POSIPOL collaboration)
 - Spent electron beam on target
 - Crystal hybrid target
 - ERL Compton source for cw operation
 - Undulator source using spent electron beam
 - LINAC-Compton source for pulsed operation
 - Collimate beam to shrink emittance
 - Recycle positron beam
- Lepton Polarization
 - Electron beam: polarized dc gun, ~90% polarization, 10-100µm normalized emittance
 - Positron beam: up to ~60% polarization from undulator or Compton based source

Ring-LINAC IR Design 50GeV

Ring-LINAC IR Design 100GeV

R.Tomas

Distance of dipole to IP should be increased slightly or large radius (radially outside calorimeter)

proton triplet

	Q 1			Q_2			
β^*	Aper	Grad	\mathbf{B}_p	Aper	Grad	\mathbf{B}_p	ξ
[m]	[mm]	[T/m]	[T]	[mm]	[T/m]	[T]	
0.20	33	131.4	4.4	42	125.0	5.3	990

Synchrotron Radiation

100 GeV electron beam

Synchrotron radiation

- Power 4.2kW
- Critical energy 0.5MeV

Large horizontal spread at IP Disadvantage of weak bent

LHeC Parameters

Example LHeC Ring-ring and Ring-LINAC parameters

	LHeC-RR	LHeC-RL	LHeC-RL	LHeC-RL	ILC	XFEL
		high lumi	$100~{\rm GeV}$	high energy		
e ⁻ energy at IP [GeV]	60	60	100	140	(2×)250	20
luminosity $[10^{32} \text{ cm}^{-2} \text{s}^{-1}]$	29	29† (2.9‡)	2.2	1.5	200	N/A
bunch population [10 ¹⁰]	5.6	0.19 [†] (0.02 [‡])	0.3 (1.5)	0.2 (1.0)	2	0.6
e ⁻ bunch length [μ m]	$\sim 10,000$	300	300	300	300	24
bunch interval [ns]	50	50	50 (250)	50 (250)	369	200
norm. hor.&vert. emittance [μ m]	4000, 2500	50	50	50	10, 0.04	1.4
average current [mA]	135	7† (0.7‡)	0.5	0.5	0.04	0.03
rms IP beam size [μ m]	44, 27	7	7	7	0.64, 0.006	N/A
repetition rate [Hz]	CW	CW	10 [5% d.f.]	10 [5% d.f.]	5	10
bunches/pulse	N/A	N/A	71430	14286	2625	3250
pulse current [mA]	N/A	N/A	10	10	9	25
beam pulse length [ms]	N/A	N/A	5	5	1	0.65
cryo power [MW]	0.5	20	4	6	34	3.6
total wall plug power [MW]	100	100	100	100	230	19

Using LHC upgrade parameters (50ns bunch spacing) RR: assuming 14 MW beam power \dagger assume energy recovery $\eta = 90\%$, $\ddagger \eta = 0$

LHeC Luminosity

luminosity $[10^{33} \text{ cm}^{-2} \text{ s}^{-1}]$ lepton ring 5 4 ERL (CW, η=90%) 3 2 1 pulsed linac 0 60 80 100 120 140 energy [GeV]

Schedule driven by beam energy. Other option driven by luminosity.

Ongoing Studies for Ring-LINAC

- Re-circulating LINAC:
 - Optics studies for multi-pass in LINAC and return arcs
 - Study of β-beat and emittance low-up for multi-pass operation
- Energy recovery:
 - Cost & infrastructure estimates based on planned projects
 - Novel ERL options for high energy reach
- Source design:
 - Options for polarized and un-polarized sources

Electron-nucleus (e-A) collisions

J.M. Jowett

- The LHC will operate as a nucleus-nucleus (initially Pb-Pb) collider
 - Physics program is expected to include:
 - **Pb-Pb** at $\sqrt{s_{NN}} = 5.5 \text{ TeV}$
 - p-Pb
 - A-A where A may be Ca, O, ...
- Natural possibility of colliding electrons with ²⁰⁸Pb⁸²⁺ nuclei
 - Requires maintenance of LHC ion injector complex (source-LINAC3-LEIR) through to the time of operation of LHeC
 - Also requires inclusion of ion capability in new generation of injector synchrotrons (PS → PS2, SPS → SPS2 ??)
- Electron-deuteron e-d collisions would require a completely new source (at least!)
 - Present CERN complex does not foresee deuterons

e-Pb Collisions

- Present nominal Pb beam for LHC
 - Same beam size as protons, fewer bunches

 $k_b = 592$ bunches of $N_b = 7 \times 10^{7-208} \text{Pb}^{82+}$ nuclei

Assume lepton injectors can create matching train of e⁻

 $k_{b} = 592$ bunches of $N_{b} = 1.4 \times 10^{10} \text{ e}^{-1}$

 Lepton-nucleus or lepton-nucleon luminosity in ring-ring option at 70 GeV

 $L = 1.09 \times 10^{29} \text{ cm}^{-2} \text{s}^{-1} \iff L_{\text{en}} = 2.2 \times 10^{31} \text{ cm}^{-2} \text{s}^{-1}$

- May be some scope to exploit additional power by increasing electron single-bunch intensity by factor 592/2808 = 4.7
- Ring-LINAC has potential for few times higher luminosity at Ring-Ring accessible energies

Conclusions

LHeC Ring-Ring and Ring-LINAC designs being studied

Ring-Ring Option

- Lots of experience: HERA, LEP and LHC
- Proven technology
- Electron energy about 70 GeV
- Luminosity 8.2 10³² to 1.4 10³³ cm⁻² s⁻¹
- Need few km (~ 2km) of new tunneling
- Electron ring installation needs long LHC shutdown (some anyway need needed for LHC and detector upgrades)
- Conceptual design quite advanced

Conclusions

Ring-LINAC option

- Most of civil construction and installation independent of LHC operation
- Need several km (~ 15km) of new tunneling
- Staged construction and exploitation possible
- High electron energy possible, increase in stages, w/o any fundamental limit
- Maximum luminosity 2-3 10^{32} cm⁻² s⁻¹ for 50 150 GeV
- In principle, energy recovery could boost luminosity above 10³⁴, but so far only demonstrated at low energies
- Large polarization possible (e⁻ 90%)
- Positron sources very challenging
- IR with better detector acceptance due to low emittance e beam
- Additional possibility of γ-p and γ-N collisions via laser Compton back-scattering
- Several design options and new ideas